Abstract
The microporous layer (MPL) plays an important role in water and thermal management of proton exchange membrane fuel cells (PEMFCs). An in-depth investigation of the mechanical compression effect on transport properties in the MPL can help optimize cell performance. In this work, the microstructure of the MPL is numerically reconstructed and the finite element method is applied to simulate mechanical behavior. Besides, the distribution of stress-strain, porosity, and pore size in the MPL under ten different levels of mechanical compression strains are studied. Lastly, the pore-scale model is employed to investigate the effective transport properties of the MPL as a function of compression strain. The analysis reveals that as the MPL strain increases from 0% to 40%, there is a 29% decrease in porosity, a 50% reduction in average pore diameter, a 60% decrease in effective gas diffusivity, a 100% increase in tortuosity, and an 80% increase in electrical and thermal conductivity. With the escalation of mechanical compression, both the magnitude and uniformity of stress-strain-displacement concurrently rise. Mechanical compression strains below 20% exhibit a lesser impact on transport properties. Beyond this threshold, exceeding the 20% compression strain point, mechanical stress assumes a critical role in influencing MPL transport properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.