Abstract
Abstract A numerical investigation has been conducted for an axisymmetric dump diffuser combustor, which is a simplified geometry of a typical lean-burn combustor in a modern civil aero-engine gas turbine. The aerodynamic performance of the combustor is analyzed with an emphasis on two common performance parameters: static pressure recovery and total pressure loss. The former is essential in maintaining high-pressure air flow across the liner, whereas the latter involves the specific fuel consumption of the aero-engine. At first, the effects of geometrical parameters of the dump diffuser combustor are investigated. A high diffuser angle seems to be detrimental to both static pressure recovery and total pressure loss. On the other hand, a high dump gap ratio is beneficial from the aerodynamic performance point of view. However, all these desired characteristics are subject to mechanical constraints and their implications for specific consumption. Optimum values of those parameters should exist for a given desired aerodynamics performance. The majority of previous researches, including the first part of this study, have been carried out with uniform inlet conditions due to a typical independent design cycle of each component. The effects of compressor exit conditions are usually not considered in the early stage design process. In the second part of this study, various inlet conditions representing a more realistic compressor exit condition such as inlet symmetrical and asymmetrical boundary layer thickness are investigated. The performance of an asymmetrical configuration with a thin boundary layer thickness near the outer annulus is almost comparable to that of its uniform counterpart. Findings of this study provide useful input for combustor designers to improve the combustor’s performance based on the compressor exit conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.