Abstract

Double-diffusive natural convection in an open top square cavity, partially heated and salted from the side, is studied numerically via the heatline approach. Constant temperatures and concentrations are imposed along the right and left walls, while the heat balance at the surface is assumed to obey Newton's law of cooling. The finite difference method is used to solve the dimensionless governing equations. The governing parameters involved in this investigation are the thermal Marangoni number (0≤MaT≤1000), the solutal Marangoni number (0≤Mac≤1000), the Lewis number (10≤Le≤100), the heater size, (0.2≤s≤0.8), Grashof number, Gr=104, Prandtl number, Pr=10, Biot number, Bi=0.1 and aspect ratio 1. The numerical results are reported for the effect of the Marangoni number, Lewis number and heater size on the contours of streamlines, isotherms, isoconcentrations, masslines and heatlines. The predicted results for the average Nusselt number and Sherwood number are presented for various parametric conditions. It is shown that the heat and mass transfer mechanisms are affected by the heater segment length. A direct relation between both opposing (N=−2) and aiding flow (N=2), and heat and mass transfer process is found for various values of the Marangoni and Lewis numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.