Abstract

In this paper, the dispersion properties of elastic waves in helical waveguides are investigated. The formulation is based on the Scaled Boundary Finite Element method (SBEFM). With a set of orthogonal unit basis introduced as the contravariant basis, the helical coordinate is firstly considered, where components of tensor retain the dimension of original quantity. Based on the strain–displacement relation, the eigenvalue matrix is obtained about wavenumbers and frequencies. The cross section of the waveguides is discretized by using high-order spectral elements. Moreover, the formulated linear matrix is utilized to design efficient and accurate algorithms to compute the eigenvalues of helical waveguides. Compared with the Pochhammer–Chree curves, the convergence and accuracy of the SBFEM are discussed. Finally, we give some dispersion curves for a wide range of lay angles and analyze in detail properties of cut-off frequency, mode separation and mode transition for elastic wave propagation in the helical waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.