Abstract

Fouling build-up in engineering assets is a known problem and, as a solution, the application of power ultrasonic for in-situ fouling removal has gained much attention from the industry. Current state-of-the-art fouling removal includes the use of hydraulic, chemical and manual techniques. Much research has been conducted to advance the knowledge on the potential uses of ultrasonics across different fouling applications, primarily in reverse osmosis membranes and heat exchangers. However, the optimization of in-situ ultrasonic fouling removal has not yet been investigated and is still in its infancy. The present study uses a previously experimentally-validated numerical model to conduct a parametric study in order to optimize the technique. Focus was given to the adoption of ultrasonics for large diameter pipes. Therefore, this investigation was conducted on a 6 in. schedule 40-carbon steel pipe. Parameters investigated include: optimum number of transducers to remove fouling in long pipes from a single transducer location; performance at elevated temperature; different fluid domains; optimum voltage; variety of input signals and incremental thickness of fouling. Depending on the particular studied conditions, the possible fouling removal of up to +/−3 m from a single transducer location is demonstrated in a 6 in. schedule 40 carbon steel pipe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.