Abstract

A study is made of the process of ignition of reactive channel walls by a laminar flow of hot gases, including the stages of heating of a substance and of reacting in the surface layer with self-acceleration of the chemical reaction. The process is determined by the heat exchange between the gas and the wall, the strength of the heat source in the chemical-reaction zone, and the sink of heat due to conduction in the radial and axial directions. In the stage of self-heating, we can have heat sink not only deep into the wall and/or through its external boundary but into the gas flow as well. The problem has been solved in a conjugate formulation. The influence of the temperature, the velocity of the gas at the entrance to the channel, and the wall thickness on ignition characteristics has been studied.In spreading a high temperature gas flow in a channel which walls are made of reactable material there appears a problem dealing with the possibility of their ignition by the flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call