Abstract

A laboratory flow past a groyne with complex hydrodynamics was investigated using surface Particle Tracking Velocimetry (PTV) technique for detecting chaotic features in fluvial mixing processes. In the reconstructed velocity field particles were deployed and tracked numerically in a Lagrangian way. Calculating some appropriate parameters (e.g. flushing times, finite-size Lyapunov exponent) originating from chaos theory, we are able to give a more detailed picture on surface mixing driven by aperiodic flows than traditional approaches, including the separation of sub-regions characterized by sharply different mixing efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.