Abstract

Abstract The paper proposes a technique of using advanced pin fins on a target plate to improve the impingement heat transfer performance in an array impingement cooling system. The initial shape of the advanced pin fin is a frustum of a cone. In order to enhance heat transfer and reduce flow resistance, the upper and lower sharp edges of the frustum of a cone are rounded. There are arrays of film holes on the target plate, and the influence of the crossflow is not considered. The flow and heat transfer characteristics of the array impingement flat plate and advanced pin fin plate were studied by numerical simulation. During the numerical simulation, the Reynolds number was varied from 2000 to 19500, the jet-to-plate spacing Z/d from 3 to 6 (d = 0.50mm) and the jet hole diameter d is 0.50 mm, 0.75 mm and 1.00 mm respectively. The results show that the averaged Nusselt number values for the advanced pin fin target plate showed an increase ranging from 15% to 20% over those for the flat target plate, It is generally considered that the enhancement of heat transfer is mainly due to the enhancement of fluid disturbance by the pin fins. However, by changing the size of the pin fins, it is found that the enhancement of heat transfer is mainly caused by the increase of heat transfer area, and the influence of enhancing the disturbance is not significant. The pressure loss is little higher than that of the flat plate. The averaged Nusselt number values for the advanced pin fin target plate decreases with the increase of the jet-to-plate spacing, and increases with the increase of Reynolds number. At the same mass flow rate, the averaged heat transfer performance of the pin fin target plate decreases with the increase of jet hole diameter, and the results show that the averaged heat transfer performance of 0.5mm jet hole diameter is the best.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.