Abstract

Air intrusion into municipal solid waste landfills can cause a localized switch from anaerobic to aerobic biodegradation adjacent to the intrusion. The purpose of this study was to explore the effects on temperature and gas composition of air intrusion into an idealized anaerobic landfill. Two scenarios of air intrusion and injection were simulated using a mechanistic landfill model built into TOUGH2. The modeled landfill geometry and properties are based on an actual U.S. landfill. The simulation results show that air intrusion can cause a quick switch from anaerobic to aerobic conditions and as a result, cause a fast increase in temperature of up to 30 °C associated with stimulation of aerobic biodegradation reactions. Associated with the change to aerobic conditions is a decrease in CH4/CO2 (v/v) ratio in the landfill gas. Depending on the air flow rate intruding or injecting into the landfill, localized aerobic biodegradation is stimulated and as a result heat generation rate of 10 to 150 W/m3 leads to temperature increase. Temperature increase near a temporary air intrusion lasts no longer than a few weeks while the high temperatures in deep layers could last up to one year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.