Abstract
Understanding particle detachment from surfaces is necessary to better characterize dust generation and entrainment. Previous work has studied the detachment of particles from flat surfaces. The present work generalizes this to investigate the aerodynamics of a particle attached to various locations on a model hill. The present work serves as a model for dust aerosolization in a tube, as powder is injected into the Venturi Dustiness Tester. The particle is represented as a sphere in a parallel plate channel, or, in two dimensions, as a cylinder oriented perpendicular to the flow. The substrate is modified to include a conical hill (3D) or wedge (2D), and the test particle is located at various positions on this hill. The governing incompressible Navier-Stokes equations are solved using the finite-volume FLUENT code. The coefficients of lift and drag are compared with the results on the flat substrate. Enhanced drag and significantly enhanced lift are observed as the test particle is situated near the summit of the hill.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.