Abstract
This work involves numerical simulations based on finite volume method to study the effects of different factors on the aerodynamic drag on a vacuum tube train running at subsonic and transonic speeds in a partially vacuum tunnel. Investigation includes the study of the effects of the shapes of head, tail, vacuum pressure and also blockage ratio of the tunnel on aerodynamic drag on a high speed train. The simulation is performed by using fluent software. Two dimensional, axisymmetric, compressible Navier-Stokes equations were solved by using k-ε turbulent modeling. Five different blockage ratios at five different speeds of the train have been considered. The simulated results show that, the blockage ratio and different working vacuum pressure significantly affects the aerodynamic drag of the train in a tunnel. Investigations with respect to different shapes of the head as well as that of the tail indicate the optimum shape for minimum drag.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.