Abstract

We recently demonstrated the reduction of the unified continuum and variational multiscale formulation to a computationally efficient fluid-structure interaction (FSI) formulation via three modeling assumptions pertaining to the vascular wall. Similar to the coupled momentum method introduced by Figueroa et al., the resulting semi-discrete formulation yields a monolithically coupled FSI system posed in an Eulerian frame of reference with only a minor modification of the fluid boundary integral. To achieve uniform second-order temporal accuracy and user-controlled high-frequency algorithmic damping, we adopt the generalized-α method for uniform temporal discretization of the entire coupled system. In conjunction with a fully consistent, segregated predictor multi-corrector algorithm preserving the block structure of the incompressible Navier-Stokes equations in the implicit solver’s associated linear system, a three-level nested block preconditioner is adopted for improved representation of the Schur complement. In this work, we apply our reduced unified continuum formulation to an appropriately prestressed patient-specific abdominal aortic aneurysm and investigate the effects of varying spatial distributions of wall properties on hemodynamic and vascular wall quantities of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.