Abstract

The transient, axisymmetric squeeze flow of the non-Newtonian shear thinning material between finite disks is studied numerically. The fluid between disks is assumed to follow the Carreau-Bird model. Two disks approach each other at a constant velocity while no-slip boundary condition is assumed. The time dependent simulation shows the effect of fluid nonlinearity, flow parameters and geometric aspect ratio on the flow dynamic and evolution of squeeze force. Also, some physical phenomena are shown and are explained at the edge of the disks and out of them. The conservation and momentum equations containing inertia effects are solved using moving mesh scheme and finite volume method. The SIMPLE algorithm is used to solve the pressure-velocity coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.