Abstract

The gas–solid two-phase turbulent plane jet flow with high Reynolds number of 4500 was numerical investigated by means of lattice Boltzmann method (LBM). The multiple relaxation time (MRT) was employed to deal with the high Reynolds number fluid flows, and the particles were traced by the Lagrangian method. The results show that the flow changes from initial symmetric mode to asymmetric mode with the development of the flow. And asymmetric pattern appears first at the position of x/d=4, where the vortex structures begin to form. The dispersion of particles at different Stokes number shows various distributions. The MRT-LBM shows its good ability in simulating turbulent flow with the high Reynolds number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.