Abstract

Nearly 40% of Europe’s total energy consumption is dedicated to buildings and heating/cooling make a significant part of this consumption. Groundwater heat pumps (GWHP) are highly efficient, and low-carbon technology that can supply heating/cooling to buildings on small or large scales. Thus, they contribute to achieving European targets of net-zero greenhouse gas emissions by 2050. In the literature, studies on the utilisation of GWHP at a district scale, particularly in chalk aquifers, are relatively rare. The implementation of district-scale geothermal heat pump (GWHP) systems poses several challenges, including dealing with the scale and complexity of the systems, addressing geological variability, managing high initial investments, balancing energy demand and supply, ensuring proper maintenance and monitoring, and mitigating potential environmental impacts. These challenges require careful consideration and strategic planning to ensure the successful deployment and sustainable operation of these systems., This study numerically investigates a district-scale GWHP system and analyses the thermal plume development created due to the heating operation, offering insights into system performance. A good match was found between field results and simulation results for water level increase and drawdown. However, there is a difference of approximately 11% in system efficiency between field tests and simulations due to the lower abstraction temperature detected in the simulation. The simulation results show that cooler water injection into the fractured chalk aquifer creates a thermal plume radially spanning out to 50 m. The thermal plume has no effect on the abstraction temperature and system performance. This result can be attributed to the large distance between injection and abstraction wells and the low hydraulic gradient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.