Abstract

Drifting fish aggregating devices (DFADs) can significantly enhance fishing efficiency and capability. Conventional drifting devices are prone to degradation in harsh marine environments, leading to marine waste or pollution. In this study, we develop a biodegradable DFAD (Bio-DFAD) to minimise negative impacts on marine ecology. To investigate the hydrodynamic performance of the proposed device, numerical modelling involving the unsteady Reynolds-averaged Navier–Stokes equation has been conducted, in which a realisable k–ε model is applied to consider the turbulence effect. The response amplitude operators, which are key parameters for design, are obtained for heave and pitch motions. The hydrodynamic performance is found to be sensitive to the relative length, relative diameter, and wave steepness, but they are less sensitive to the relative current velocity. This work provides some scientific insights for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.