Abstract

The effects of the rotor/stator blade row interaction on the performance of radial turbine stages are investigated numerically. A three-dimensional unsteady incompressible Navier-Stokes method based on the dual-time stepping and the pseudocompressibility method is developed for the performance prediction. A centrifugal pump with a vaned diffuser is calculated for validation purposes, and the predicted unsteady flow results show reasonable agreement with the experimental data. The method is applied to analysis of hydraulic turbine stages. A generic turbine rotor is combined with a row of nozzle guide vanes with three settings of radial gap and numerical flow simulations are conducted for the performance evaluations. The predicted efficiency of the hydraulic turbine stages deteriorates if the radial gap between blade rows is reduced although the difference is very small. The entropy rises along the streamlines suggest that the differences in the stage efficiency level can be largely attributed to the loss generated in the nozzle vane passages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.