Abstract

The ANSYS/AUTODYN software was employed to investigate the dynamic response of the metallic sandwich panels subjected to air blast loading. The sandwich panels were composed of two face sheets and a trapezoidal corrugated-core. To validate the numerical models, the simulation results were compared with experimental data reported previously. In the simulation works, the process of shock wave propagation and the structural dynamic response were analyzed. Meanwhile, the influences of the stand-off distance between the explosive charge and the front face sheet on the fluid-structure interaction effect, dynamic response and the energy absorption of sandwich panels were investigated. Numerical results demonstrated that the impulse intensity decreased dramatically with the increase of stand-off distance. The slapping between the front face sheet and the back face sheet could be observed at the stand-off distances of 50 mm and 100 mm, while the sandwich panel exhibited the “strong core” response mode under the stand-off distance of 150 mm. Investigations into energy absorption characteristic revealed that the total energy absorption reduced with the increase of stand-off distance. The front face and corrugated-core provided the most contribution on total energy absorption. Moreover, the energy absorption proportion of corrugated-core had a positive correlation with the stand-off distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call