Abstract

This paper presents the use of computational fluid dynamics (CFD) to determine the distribution of the bed and sidewall shear stresses in trapezoidal channels. The impact of the variation of the slant angle of the side walls, aspect ratio, and composite roughness on the shear stress distribution is analyzed. The shear stress data can be directly output from the CFD models at the boundaries, but they can also be derived using the Guo and Julien equations for the average bed and side wall shear stresses. These equations compute the shear stress as a function of three components; gravitational, secondary flows, and interfacial shear stress, and are hence used to gauge the respective merits of the different components of wall shear. The results show a significant contribution from the secondary currents and internal shear stresses on the overall shear stress at the boundaries. This work also extends previous work of the authors on rectangular channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call