Abstract

The paper reports a numerical investigation into the effect of rubble mounds inside perforated caisson breakwaters (PCBs), in which a line-shaped mass source wavemaker is proposed for generating random waves. A series of experiments are employed to validate the numerical model, and good agreements are observed in the comparison of the experimental and numerical results. With the use of the validated numerical model, the numerical investigation is performed, in which the attention is mainly paid to two parameters: the slope angle and porosity of the inner rubble mound. The result shows that, as the slope angle of the inner rubble mound increases, the reflection coefficient is observed to decrease first and then increase, and compared to the experiment, both the positive and negative hydrodynamic pressure acting on the solid rear wall of PCBs is weakened. On the other hand, although a larger inner rubble mound porosity is beneficial to diminish the reflection coefficient, the reduction is not obvious especially when the front wall porosity is small. Furthermore, as the increase of front wall porosity and relative wave absorption chamber length (the ratio of wave absorption chamber length to significant wavelength), the effect of the slope angle and porosity of the inner rubble mound becomes more significant because more waves could enter the wave absorption chamber. The relative wave absorption chamber length considered in the present study ranges from 0.06 to 0.21, and the recommended slope angle is approximately 45 degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call