Abstract

Needle syringe irrigation is frequently used in root canal therapy, and the flow pattern during irrigation can be efficiently manipulated by means of passive flow control technique, resulting in expected irrigation performance improvement. Therefore, novel needles with composite flow control structures are numerically investigated and optimized in this study. Based on the 30G needle, six single/double side-vented needles with dimple and protrusion are proposed. Two flow rates in line with clinical applications, 5.3 and 8.6 m/s, are used in the analysis. Three performance parameters are investigated. The safety of the irrigation system is evaluated by the root canal apical pressure, whereas the irrigant extension and the flushing efficiency are evaluated by the extending depth and the effective cleaning area, respectively. The results demonstrate that the shear stress of the double-side-vented needle is higher while the irrigant extension is enhanced with a dimple structure. The performance of the double-side-vented needle with a dimple is superior to that of other designs, with up to 33% improvement in extending depth and a 22% increase in effective cleaning area over the prototype. New needles do not raise risk of irrigant extrusion. Furthermore, the effect of dimple depth and outlet angle are investigated. The needle with a dimple of 0.04 mm depth shows the highest extending depth within the confines of the investigation. The effective cleaning area is significantly influenced by the needle outlets, and the effective cleaning area expands with an increase in needle outlet angle, while the extending depth gradually declines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.