Abstract
ABSTRACTIn order to study the flow behavior and optimize separation performance, a three-dimensional numerical model of an improved supersonic separator was developed. The proposed model takes into account the compressible and strong swirling effect. Four widely-used turbulence models include Sparlart–Allmaras model, realizable k–ε model, shear-stress transport (SST) k–ω model, and Reynolds stress model (RSM) were validated and compared by the experimental date reported in the literature. The comparison results indicated that RSMs have great potential to predict the flow inside supersonic separator. Based on the established numerical model, the distribution of critical parameters such as temperature, pressure, and Mach number was obtained. The influence of the pressure loss ratio on the shockwave location occurred at the divergence section of the Laval nozzle was systematically studied. Analysis about the relationship between the pressure effect and shock wave location was carried out to explore the principal factors that limit the performance of the supersonic separator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.