Abstract

This work is devoted to the construction and analysis of a new nonlinear technique that allows obtaining accurate numerical integrations of any order using data that contains discontinuities, and when the integrand is only known at grid points. The novelty of the technique consists in the inclusion of correction terms with a closed expression that depend on the size of the jumps of the function and its derivatives at the discontinuities, that are supposed to be known. The addition of these terms allows recovering the accuracy of classical numerical integration formulas close to the discontinuities, as these correction terms account for the error that the classical integration formulas commit up to their accuracy at smooth zones. Thus, the correction terms can be added during the integration or as post-processing, which is useful if the main calculation of the integral has been already done using classical formulas. We include several numerical experiments that confirm the theoretical conclusions reached in this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.