Abstract

This paper focuses on the numerical integration of polynomial functions along non-uniform rational B-splines (NURBS) curves and over 2D NURBS-shaped domains, i.e. domains with NURBS boundaries. The integration of the constant function f=1 is of special interest in computer aided design software and the integration of very high-order polynomials is a key aspect in the recently proposed NURBS-enhanced finite element method (NEFEM). Several well-known numerical quadratures are compared for the integration of polynomials along NURBS curves, and two transformations for the definition of numerical quadratures in triangles with one edge defined by a trimmed NURBS are proposed, analyzed and compared. When exact integration is feasible, explicit formulas for the selection of the number of integration points are deduced. Numerical examples show the influence of the number of integration points in NEFEM computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.