Abstract

We study numerically classical 1-dimensional Hamiltonian lattices involving inter-particle long range interactions that decay with distance like 1/rα, for α≥0. We demonstrate that although such systems are generally characterized by strong chaos, they exhibit an unexpectedly organized behavior when the exponent α<1. This is shown by computing dynamical quantities such as the maximal Lyapunov exponent, which decreases as the number of degrees of freedom increases. We also discuss our numerical methods of symplectic integration implemented for the solution of the equations of motion together with their associated variational equations. The validity of our numerical simulations is estimated by showing that the total energy of the system is conserved within an accuracy of 4 digits (with integration step τ=0.02), even for as many as N=8000 particles and integration times as long as 106 units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call