Abstract

The image labeling problem can be described as assigning to each pixel a single element from a finite set of predefined labels. Recently, a smooth geometric approach was proposed [2] by following the Riemannian gradient flow of a given objective function on the so-called assignment manifold. In this paper, we adopt an approach from the literature on uncoupled replicator dynamics and extend it to the geometric labeling flow, that couples the dynamics through Riemannian averaging over spatial neighborhoods. As a result, the gradient flow on the assignment manifold transforms to a flow on a vector space of matrices, such that parallel numerical update schemes can be derived by established numerical integration. A quantitative comparison of various schemes reveals a superior performance of the adaptive scheme originally proposed, regarding both the number of iterations and labeling accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.