Abstract
Erythropoiesis, the red blood cell production process, involves interactions between cell populations with different differentiation states, mainly immature progenitor cells and mature erythrocytes, and growth factors such as erythropoietin and glucocorticoids, known to respectively inhibit cell apoptosis, stimulate proliferation and differentiation, and stimulate self-renewal. The feedback regulation of this process allows a very fast and efficient recovery in the case of a severe anemia. We consider an age-structured model of red blood cell production accounting for these feedback regulations and the dynamics of growth factors. We theoretically show the existence of a unique positive steady state for the model and we propose a numerical method to obtain an approximation to its solution. Experiments are reported to show numerically, on one hand, the optimal convergence order of the numerical scheme and, on the other hand, a fine approximation to real experimental data, with a suitable selection of the parameters involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.