Abstract

Detailed insight into dense multisize particulate flow field in a straight channel subject to spanwise system rotation is presented for the first time. Mathematical modelling employs Eulerian-Eulerian (continuum-mechanical) approach accounting for the broad particle size distribution that is common place in industrial slurries. Numerical formulation utilises Galerkin FEM using Q1Q0 elements. Besides counter-intuitive observations in velocity flow field, the effects of varying system rotation rates and flow Reynolds number indicate interesting interplay between turbulence, Coriolis force and centrifugal force on the dense solid-liquid flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call