Abstract

The equation governing the streaming of a quantity down its gradient superficially looks similar to the simple constant velocity advection equation. In fact, it is the same as an advection equation if there are no local extrema in the computational domain or at the boundary. However, in general when there are local extrema in the computational domain, it is a nontrivial nonlinear equation. The standard upwind time evolution with a CFL-limited timestep results in spurious oscillations at the grid scale. These oscillations, which originate at the extrema, propagate throughout the computational domain and are undamped even at late times. These oscillations arise because of unphysically large fluxes leaving (entering) the maxima (minima) with the standard CFL-limited explicit methods. Regularization of the equation shows that it is diffusive at the extrema; because of this, an explicit method for the regularized equation with $\Delta t\propto\Delta x^2$ behaves fine. We show that the implicit methods show stable and converging results with $\Delta t\propto\Delta x$; however, surprisingly, even implicit methods are not stable with large enough timesteps. In addition to these subtleties in the numerical implementation, the solutions to the streaming equation are quite novel: nondifferentiable solutions emerge from initially smooth profiles; the solutions show transport over large length scales, e.g., in form of tails. The fluid model for cosmic rays interacting with a thermal plasma (valid at space scales much larger than the cosmic ray Larmor radius) and the equation of saturated conduction in a collisionless plasma are similar to the streaming equation, so our method will find applications in fluid modeling of important processes in plasma astrophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.