Abstract

The article considers the numerical study of multicriteria optimization of the minimum surface shell of a rectangular contour taking into account the thermal load. The authors cover the theoretical formulation of multicriteria parametric optimization. A method of constructing this minimal surface on a rectangular contour is described. The specifics of the issuance of thermal power load in the optimization calculation, which is in all initial indicators and coefficients. The types of work of target functions are shown, namely: under what conditions they conflict, under what conditions they consolidate, under what conditions they are independent of each other. The numerical study uses the author's software, which allows in automatic mode a multicriteria optimization calculation with target functions - weight and Mises stress, design variables - thickness from 1 to 200 mm, presented as a Mises voltage of 240 MPa. The result showed that the target functions of the conflict change, but the weight decreases by 20%, and the Mises voltage decreases by 37% of the elements. From the graph of the change of objective functions according to the optimal height, what is the point for the objective functions - weight and stress according to Mises is absence. The overall purpose of the study shows the possibility of using authoring software to use two types of optimization: optimization of shapes in the form of these minimum surface parameters on rectangular and multicriteria optimization together on the object under study, which is interesting and applied research in structural mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.