Abstract

Dynamical mean field theory (DMFT) is a tool that allows one to analyze the stochastic dynamics of N interacting degrees of freedom in terms of a self-consistent 1-body problem. In this work, focusing on models of ecosystems, we present the derivation of DMFT through the dynamical cavity method, and we develop a method for solving it numerically. Our numerical procedure can be applied to a large variety of systems for which DMFT holds. We implement and test it for the generalized random Lotka–Volterra model, and show that complex dynamical regimes characterized by chaos and aging can be captured and studied by this framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.