Abstract
Very often computations on structural elements or machine components subjected to variable loading require using an advanced finite element model. This paper reports the numerical implementation of a model for multiaxial cyclic elasticplastic behaviour developed to extend the tools of the local deformation method under fatigue to multiaxial conditions. A basic computer code for axialtorsional loads was developed with the commercial software Matlab and a more sophisticated code based on the finite element model for general multiaxial loads was developed as a UMAT subroutine in Abaqus. Stress integration was introduced in the two usual forms: implicitly and explicitly. A comparison of the results obtained with the implicit and explicit formulations revealed that, under certain loading conditions, the outcome of the process depends on the particular integration scheme used.
Highlights
This paper reports the numerical implementation of a model for multiaxial cyclic elasticplastic behaviour developed to extend the tools of the local deformation method under fatigue to multiaxial conditions
A basic computer code for axialtorsional loads was developed with the commercial software Matlab and a more sophisticated code based on the finite element model for general multiaxial loads was developed as a UMAT subroutine in Abaqus
The cyclic plastic behaviour of some materials can be defined via so-called “cyclic stress-strain curves”, which are widely used in fatigue studies to introduce steady-state cyclic behaviour in computations of fatigue life at small numbers of cycles in the Local Strain Method [1,2,3]
Summary
The cyclic plastic behaviour of some materials can be defined via so-called “cyclic stress-strain curves”, which are widely used in fatigue studies to introduce steady-state cyclic behaviour in computations of fatigue life at small numbers of cycles in the Local Strain Method [1,2,3]. In previous work [4,5,6,7,8], we developed a plasticity model to simulate the behaviour of materials under multiaxial loads from cyclic stress-strain curves obtained in uniaxial loading tests with a view to extending the applicability of the Local Strain Method to multiaxial loading. This computational procedure for fatigue life is included in some commercial software packages. A more detailed description of the model can be found elsewhere [4,5,6,7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.