Abstract
The failure of tube heat exchangers is an acute problem in industry and, in most cases, is due to the solid particle erosion of a few tubes. Identifying the critical erosion surfaces and thereafter changing the particle impingement pattern on the surfaces is one of the solutions to increase the lifetime of heat exchangers. In this work the fluid flow, solid particle motion and metal erosion of different two-pass copper-tube heat exchangers were simulated with a refined model and the sophisticated RANS-SST approach. The results showed the importance of the model in capturing the asymmetrical flow, uneven fluid distribution through tube bundle and other flow features for better erosion prediction. The erosion characteristics of three heat exchangers were compared to evaluate their structure with respect to producing low erosion. The simulations provided basic data for identifying the critical areas and damage locations of each heat exchanger. It was found that the particle separation in the inlet header altered the critical erosion locations but did not significantly affect the erosion rate. Theerosion rates at critical areas were also predicted. The results can be applied for predicting the service life and improving the structure of tube heat exchangers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Computational Fluid Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.