Abstract

Homogenization has proved its effectiveness as a method of upscaling for linear problems, as they occur in single-phase porous media flow for arbitrary heterogeneous rocks. Here we extend the classical homogenization approach to nonlinear problems by considering incompressible, immiscible two-phase porous media flow. The extensions have been based on the principle of preservation of form, stating that the mathematical form of the fine-scale equations should be preserved as much as possible on the coarse scale. This principle leads to the required extensions, while making the physics underlying homogenization transparent. The method is process-independent in a way that coarse-scale results obtained for a particular reservoir can be used in any simulation, irrespective of the scenario that is simulated. Homogenization is based on steady-state flow equations with periodic boundary conditions for the capillary pressure. The resulting equations are solved numerically by two complementary finite element methods. This makes it possible to assess a posteriori error bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.