Abstract

Draa Sfar is a polymetallic (Zn–Pb–Cu) volcanogenic massive sulfide deposit with an actual resource of 13 Mt at 4.0% Zn and 1.3% Pb. It is part of the central Jbilets area known for its several Cu–Zn ore deposits. The ore is hosted in the upper Visean-Namurien sedimentary formation. Owing to the complexity of the geology of the ore deposits, numerical simulation approach was attempted to shed light into the temperature distribution, the circulation of the hydrothermal fluid and the genesis of massive sulfide ore bodies by evaluating the permeability, porosity, and thermal conductivity. On the basis of this simulation approach, the ore is predicted to be deposited at a temperature ranging between 230 and 290 °C. This temperature range is dependent on the pre-existing temperature of the discharge area where a metal-rich fluid precipitated the ore. The duration of the Draa Sfar ore body formation is predicted to be 15, 000 to 50, 000 years. Based on geological studies of Draa Sfar deposit together with the aforementioned results of the simulation approach, an ore genetic model for the massive sulfide ore bodies is proposed. In this model, the supply of ore-forming fluids is ensured by the combination of seawater and magmatic waters. Magma that generated rhyodacite dome acted as the heat source that remobilized the circulation of these ore-bearing fluids. The NW-SE trending faults acted as potential pathways for both the downward and upward migration of the ore-forming fluids. Due to their high permeability, the ignimbritic facies, host rocks of Draa Sfar ore bodies, have favored the circulation of the fluids. The mixing between the ore-forming fluids of magmatic origin and the descending seawaters and/or in situ pore waters led to the formation the ore bodies in 35,000 years. The position and size of the ore body, determined by the simulation approach, is consistent with the actual field geological data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.