Abstract
Traditional failure criteria for composites are usually formulated in material coordinates and depend on all three inplane stresses, hence failure evaluation depends on the ply angle. The omnistrain failure envelope describes the most critical failure envelope in strain space irrespective of ply orientation. This independence of ply orientation leads to an isotropic failure criterion that depends only on the principal strains. Omnistrain envelopes greatly simplify the task of design and optimisation of composite laminates. This paper proposes a numerical technique to generate omnistrain failure envelopes for different composite failure criteria. The failure index, describing how far a point in strain space is from the failure boundary, is used to describe the failure surface. Assuming convexity of the failure surface, a set of points is generated on the surface, and the convex hull algorithm is used to generate a polygonal approximation of the failure surface. Representing strains in terms of principal strains and the angle between the principal and material coordinates, allows us to eliminate the angle analytically by considering the worst case condition. The omnistrain envelope is thus directly generated from the approximate three-dimensional failure surface. The proposed algorithm does not require analytic expressions of the failure surface. An adaptive algorithm is proposed to generate the omnistrain envelope with relatively small number of points. As demonstration of the proposed algorithm, the omnistrain envelopes for various composite materials are generated for a number of composite failure criteria. The omnistrain envelopes generated for the Tsai-Wu criteria accurately match to existing analytic expressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.