Abstract

A flow visualization of the two-dimensional rigid fling-clap motions of the flat-plate wing is performed to get the knowledge of fling-clapping mechanism that might be employed by insects during flight. In this numerical visualization, the time-dependent Navier-Stokes equations are solved for two types of wing motion; 'fling followed by clap and pause motion' and 'cyclic fling-clapping motion'. The result is observed regarding the main flow features such as the sequential development of the two families of separation vortex pairs and their movement. For the 'fling followed by clap and pause motion', a strong separation vortex pair of counterrotation develops in the opening between the wings in the fling phase and they then move out from the opening in the following clap phase. For 'the cyclic fling-clapping motion', the separation vortex pair developed in the outside space in the clap phase move into the opening in the following fling phase. The separation vortex pair in the opening developed in the fling phase of the cyclic motion is observed to be stronger than those of the 'fling followed by clap and pause motion'. Regarding the strong fling separation vortex and the weak clap separation vortex above it in the opening, the flow pattern of the fling phase of the cyclic fling and clap motion is different to that of the fling phase of the first cycle. The flow pattern of the third cycle of the cyclic fling-clapping motion is observed to be almost same as that of the second cycle. Therefore, a periodicity of the flow pattern is established after the second cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.