Abstract

Abstract In this study, a numerical framework for joint rotation configuration models of a finger is proposed. The basic idea is to replicate the finger’s geometric posture observed when the human hand grasps a cylindrical object with various cross sections. In the model development, objects with the cross section adopted from the curves of order two (the family of conic sections) are taken into consideration to realize various finger postures. In addition, four different grasp styles, which simulate the individual-specific contact pattern between the surfaces of object and finger, are modeled and applied for the formulation of numerical models. An idea on how to change flexion/extension patterns in the middle of excursion of movement is proposed and discussed. Series of numerical studies have been conducted and analyzed to evaluate the proposed models. From the results, one can see the models’ feasibility and viability as a solution to describing finger’s flexion/extension movements (FEMs) for grasping patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.