Abstract

Introduction. The active and reactive (inductive) winding resistances of three-phase asynchronous motors (IM) are investigated. These important parameters are determined during design and are the basis for calculating a number of energy parameters and characteristics. Problem. In the classical design of IM, the winding resistances are determined with insufficient accuracy due to a number of assumptions and conventions. Especially it concerns the operation of IM with increased slip and it affects the accuracy of realization of its design data, starting parameters and characteristics. Goal. The paper aims to further develop the IM design system by numerical-field computational analysis of active and reactive resistances of the IM windings in the whole range of changes in its slip and calculation of the mechanical characteristic of IM to confirm the adequacy of the calculations of these resistances. Methodology. Resistances of the IM windings are determined by numerous calculations of the magnetic fields of dispersion with the FEMM program within stator and rotor teeth steps, and with current displacement in a squirrel-cage rotor core. Everything is done in the slip range when operating from start-up to idle with changing currents in the slots and the corresponding magnetic saturation of the core teeth. A Lua script has been created for the calculations, controlling the FEMM program and providing automation of all calculations. Results. The numerical-field method shows that the classical design method gives very large errors in determining the magnetic conductivities of IM slot dispersion, as well as current displacement in the bars of the squirrel-cage rotor winding. This is especially evident with increased slips in the start-up mode. Originality. Numerical estimates of the differences between the classical and numerical-field methods are given and the origin of errors is analyzed: the strong saturation of the teeth of the stator and rotor cores. This leads to a significant decrease in the magnetic conductivities of slot dispersion and the practical absence of current displacement in the rotor bars, on which the main emphasis was previously made. The obtained results made it possible to calculate the mechanical characteristic of the IM according to a transparent formula without the use of correction coefficients and reference graphical functions. Practical value. The provided technique of numerical-field analysis and the obtained results of the calculation of active and reactive winding resistances and mechanical characteristic are recommended as a basis for the improvement of the IM design system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call