Abstract

The blast tube flowfield of a solid rocket motor is explored numerically by solving 3-D RANS equations with SST Turbulence model using a commercial computational fluid dynamics (CFD) software CFX-10. Parametric studies are carried out to find out the effect of the blast tube diameter on the total pressure loss in the rocket motor. It is observed that the total pressure loss in the rocket motor is less than 4 per cent and the blast tube is contributing less than 1 per cent. It is also found out that higher the blast tube diameter, the lesser the drop in the total pressure. Blast tube geometry is not found to contribute significantly in the overall thrust and specific impulse in the rocket motor. Defence Science Journal, 2013, 63(6), pp.616 -621 , DOI:http://dx.doi.org/10.14429/dsj.63.5763

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.