Abstract
The conservation of thermal energy equation applied to the mixed layer of the ocean, has been used to predict the sea surface temperature anomalies (SSTA) and the month-to-month changes in the Gulf of Mexico. The model includes the horizontal transport of heat by mean ocean currents and by turbulent eddies, as well as the heating by short and long wave radiation, evaporation and sensible heat given off to the atmosphere. A comparative study is carried out on the relative importance of the heating and transport terms. An objective verification of the skill of the predictions is presented for each season and for the whole period from March 1986 to February 1987. The predictions using only the heating terms have some skill over the control predictions (persistence and return to normal). The skill is substantially increased when the horizontal transport of heat by turbulent mixing is included in the model. The incorporation in the model of the Ekman wind drift current anomalies computed from the anomalous surface geostrophic wind improves appreciably the skill of the predictions in winter and fall. The mixed layer depth computed using the Kraus and Turner theory with dissipation, shows that the depths in summer and fall are shallower than in spring and winter. The effect of the shallow mixed layer depth in the model becomes apparent in summer and fall, improving the skill of the predictions in these seasons, with respect to the skill obtained using a constant mixed layer depth of 60 m. The incorporation in the model of the cooling in the mixed layer by turbulent entrainment of colder water from the thermocline, does not improve in an appreciable way the average skill of the predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.