Abstract

The random quantum Ashkin-Teller chain is studied numerically by means of time-dependent Density-Matrix Renormalization Group. The critical lines are estimated as the location of the peaks of the integrated autocorrelation times, computed from spin-spin and polarization-polarization autocorrelation functions. Disorder fluctuations of magnetization and polarization are observed to be maximum on these critical lines. Entanglement entropy leads to the same phase diagram, though with larger Finite-Size effects. The decay of spin-spin and polarization-polarization autocorrelation functions provides numerical evidence of the existence of a double Griffiths phase when taking into account finite-size effects. The two associated dynamical exponents z increase rapidly as the critical lines are approached, in agreement with the recent conjecture of a divergence at the two transitions in the thermodynamic limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.