Abstract

The stationary, isothermal rotational spinning process of fibers is considered. The investigations are concerned with the case of large Reynolds (δ = 3/ Re ≪ 1) and small Rossby numbers (ε ≪ 1). Modelling the fibers as a Newtonian fluid and applying slender body approximations, the process is described by a two-point boundary value problem of ODEs. The involved quantities are the coordinates of the fiber's centerline, the fluid velocity and viscous stress. The inviscid case δ = 0 is discussed as a reference case. For the viscous case δ > 0 numerical simulations are carried out. Transfering some properties of the inviscid limit to the viscous case, analytical bounds for the initial viscous stress of the fiber are obtained. A good agreement with the numerical results is found. These bounds give strong evidence, that for δ > 3ε2 no physical relevant stationary solution can exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.