Abstract

A theoretical and numerical framework to evaluate rolling contact using an arbitrary Lagrangian–Eulerian (ALE) formulation is established. A finite element formulation is implemented featuring cylinder–plate contact, automated mesh refinement, non-reflecting boundary conditions, and the ability to incorporate surface roughness through user-defined gap functions. Presented examples include rolling contact on a corrugated surface and negotiation of a surface discontinuity. Sensitivity and validation analyses are presented and show the model to be robust and the trends in parametric responses to be reasonable as compared to results in literature. Owing to the ALE formulation, the model can be kept very compact and the computational demands very modest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.