Abstract

• Vibration response of a cylinder with a free-to-rotate fairing is investigated. • Holding fairing in a stable position has a positive role in suppressing vibration. • Suppression effect is sensitive to the incoming flow velocity. • Fairing stability is dependent on the chord length and torsion friction. • A strongly flapping fairing can be used as an amplifier of VIV for energy harvesting. The suppression of vortex-induced vibration (VIV) of a circular cylinder with a free-to-rotate triangular fairing in the Reynolds number range of Re = 1100–6100 is numerically investigated using computational fluid dynamics. The unsteady Reynolds-averaged Navier–Stokes equations and the shear stress transport k – ω turbulence model coupled with an improved fourth-order Runge–Kutta method are used to solve the wake flow, the structure's vibration, and the fairing's rotation. The computational model is validated with the available experimental results for a cylinder with an attached short-tail fairing. The numerical results indicate that the triangular fairing has a positive role in suppressing vibration when it achieves a stable position deflected from the flow direction. The suppression effect is sensitive to the incoming flow velocity. The fairing shifts from a stable state to an unstable one when the flow velocity varies. Therefore, maintaining the hydrodynamic stability of the fairing is the key to achieving success in vibration suppression, and the stability is dependent on the characteristic length and the rotational friction. Although the strong flapping of the 70° triangular fairing excites a more vigorous vibration, it may be used as an amplifier of VIV for energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.