Abstract

The exploitation of natural gas hydrate from the unconfined marine sediments, which is overlain by permeable layer, is challenging, as the traditional depressurization method cannot induce significant pressure drop in the hydrate reservoir to release the gas. To overcome this problem, we here numerically investigate the performance of joint depressurization and thermal stimulation to extract the gas in Shenhu area, South China Sea. The influences of warm water injection and the horizontal well placements on the gas production are mainly discussed. The results show that gas recovery can be improved significantly by the injection of warm water, attributed to the increase of the temperature in the hydrate-bearing sediment. A higher gas production can be obtained by locating vertically the injection well in the middle of the hydrate-bearing sediment, which can reduce the water recharge from the layers overlying and underlying the hydrate-bearing sediment. Moreover, the well spacing affects the methane production significantly when the thermal stimulation starts. The numerical experiments may be useful for future design and optimization of marine gas hydrate exploitation under similar conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.