Abstract

In this study, a model for describing both chain reactions and product growth for the explosions of methane/coal volatiles mixtures based on chemical reaction kinetics was established to calculate the impact of initial temperature and initial pressure on the deflagration features of the mixtures. The variation for the macroscopic explosion parameters and the microscopic reactions of methane/coal volatiles explosions under different conditions are investigated using reaction kinetics simulation. Results suggest that the Pmax increased by 64.496 %, 64.499 %, 64.502 %, and 64.504 % when the initial pressure changed from 0.8 to 1.3 atm. Whereas, under increasing initial temperature, the Pmax decreased by −18.167 %, −18.179 %, −18.190 %, and −18.200 % while the Tmax increased by 90.49 K, 90.07 K, 89.67 K, and 89.30 K, respectively. Meanwhile, the influence of initial temperature on the sensitivity of primary elementary reactions was more prominent than that of the initial pressure. The ROP of the key radicals H/O/OH unnecessarily presented an increasing tendency under the increasing initial temperature while the maximal molar fraction of each key radical increased. The increase in both initial pressure and initial temperature would greatly promote the growth of C(B), which in turn largely accelerated the formation of soot particles. This preliminary work would be beneficial for the preemptive precaution and effective control of the explosions in coal-derived industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.