Abstract
Natural gas and diesel dual-fuel combustion is a promising technology for efficiently utilizing natural gas in a compression ignition engine. Natural gas composition varies depending on the geographical source, which affects engine performance. The methane number is an indicator of natural gas fuel quality to assess the variation in composition. In this study, the influences of methane number on natural gas/diesel dual-fuel combustion were numerically examined using computational fluid dynamic simulations. The differences between natural gases with the same methane number but different components were also compared. Two dual-fuel combustion strategies, diesel pilot ignition, and reactivity controlled compression ignition were evaluated. The results show that for both diesel pilot ignition and reactivity controlled compression ignition, the ignition delay increases and the combustion duration decreases as the methane number is increased. The retarded trend of ignition of reactivity controlled compression ignition is more significant than that of diesel pilot ignition, while the decreased trend in combustion duration is less significant. To understand this trend, a chemical kinetics study of ignition delay characteristic of natural gas and n-heptane mixture was conducted. The result reveals that introducing ethane, propane, or an ethane–propane mixture into pure methane shortens the ignition delay in the entire temperature range. However, for the methane and n-heptane mixture, adding ethane, or propane, or an ethane–propane mixture shortens the ignition delay in the high temperature range, while increases the ignition delay in the low temperature range. These observations in combination with the analysis of air–fuel mixture formation and combustion provide the evidence to interpret the different ignition and combustion behaviors between diesel pilot ignition and reactivity controlled compression ignition combustion. In addition, a temperature A-factor sensitivity study was carried out to explain the result of the chemical kinetics study. Furthermore, the responses of emissions to methane number were also investigated. The results show that for diesel pilot ignition, the hydrocarbon and carbon monoxide emissions decrease with the decreased methane number. However, for reactivity controlled compression ignition, the variations of hydrocarbon and carbon monoxide emissions with the methane number are not so obvious as for diesel pilot ignition combustion. For both diesel pilot ignition and reactivity controlled compression ignition combustion, the nitrogen oxides emissions show a strong dependence on combustion phasing rather than natural gas composition. Overall, to control diesel pilot ignition combustion, the methane number should be considered together with other parameters. However, attention should be paid to other control parameters for the reactivity controlled compression ignition combustion. The engine performance of reactivity controlled compression ignition is not sensitive to the variation of natural gas composition, so it can adapt to the natural gas from different sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.