Abstract

The stability characteristics of closed supercritical natural circulation loop has hardly been explored owing to the mathematical complexity and absence of explicit boundary condition. Present numerical study investigates the nature of both static and dynamic instability in a rectangular loop with carbon dioxide as the working medium. Sharp deterioration in the steady-state circulation rate can be observed, consistent to existing multidimensional analyses. Loop exhibits Ledinegg instability for an intermediate range of heater power, characterized by multiple steady-state solutions. Appearance of static instability has been substantiated following the pressure drop versus mass flow rate profiles, leading to the development of the stability maps. Dynamic instability has also been identified by introducing perturbation during transient simulations, and the range of both static and dynamic instabilities conforms well with each other. A novel approach of approximating the location of the stability threshold using time-series data has also been proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.