Abstract

The crack growth rate during cyclic loading is investigated via numerical simulations. The crack advancement is governed by a propagation criterion that relates the increment in plastically dissipated energy ahead of the crack tip to a critical value. Once this critical value is satisfied, crack propagation is modeled via a node release scheme. Thus, the crack growth rate is an output from the numerical simulation. The crack growth rate predicted by the proposed scheme is compared with published experimental crack growth data in the Paris-regime for selected metals. A good match is found between the experimentally observed crack growth rates and the numerically obtained results. The Paris coefficients are subsequently evaluated from the numerically obtained crack growth rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.